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Abstract

This paper is concerned with the performance of Orthogonal Matching Pursuit
(OMP) algorithms applied to a dictionary D in a Hilbert space H. Given an element
f € H, OMP generates a sequence of approximations f,, n = 1,2,..., each of which
is a linear combination of n dictionary elements chosen by a greedy criterion. It is
studied whether the approximations f,, are in some sense comparable to best n term
approzimation from the dictionary. One important result related to this question
is a theorem of Zhang [§] in the context of sparse recovery of finite dimensional
signals. This theorem shows that OMP exactly recovers n-sparse signal, whenever
the dictionary D satisfies a Restricted Isometry Property (RIP) of order An for some
constant A, and that the procedure is also stable in ¢? under measurement noise.
The main contribution of the present paper is to give a structurally simpler proof of
Zhang’s theorem, formulated in the general context of n term approximation from a
dictionary in arbitrary Hilbert spaces H. Namely, it is shown that OMP generates
near best n term approximations under a similar RIP condition.
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1 Introduction

Approximation by sparse linear combinations of elements from a fixed redundant family is
a frequently employed technique in signal processing and other application domains. We
consider such problems in a separable Hilbert space H endowed with a norm ||| := || - ||
induced by the scalar product (-,-) on H x H. A countable collection D = {¢,},er C H
is called a dictionary if it is complete, i.e., the set of finite linear combinations of elements
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of the dictionary are dense in H. The simplest example of a dictionary is the set of
elements of a fixed basis of H. But our primary interest is in redundant families. In such
a case, there exists a strict subset of D that is still a dictionary. A primary example of
a redundant dictionary is a frame, e.g., any union of a finite number of bases. Without
loss of generality we shall always assume that the dictionary D is normalized, i.e.,

Iyl =1, ~vel.

Given such a dictionary D, we consider the class

5, = %.(D) = {Zc,y% L #(S) < n} CH, n>l (1.1)

yeS

The elements in Y, are said to be sparse with sparsity n. We define
n = inf — Yl
Ou(Fn = Inf [If =gl

which is called the error of best n-term approximation to f from the dictionary D.

An important distinction between n term dictionary approximation and other forms
of approximation, such as approximation from an n dimensional space, is that the set
Y, 1s not a linear space since the sum of two elements in ¥, is generally not in ¥,
although it is in Y,,. Thus n-term approximation from a dictionary is an important
example of nonlinear approximation [3] that reaches into numerous application areas
such as adaptive PDE solvers, image encoding, or statistical learning. It also serves as
a performance benchmark in compressed sensing that better captures the robustness of
compressed sensing than results on exact sparsity recovery [2].

While there are many themes in n term dictionary approximation, our interest here is
in analyzing the performance of greedy algorithms for generating n-term approximations
to a given target element f € H. There are numerous papers on this subject. We
refer the reader to the survey article [6] as a general reference. Our particular interest
is in understanding what properties of the dictionary D guarantee that these algorithms
perform similarly to best n-term approximation.

These algorithms and best n-term approximation have a simple description when the
dictionary D is an orthonormal or, more generally, a Riesz basis of 4. In this case, the
best n-term approximations to a given f € H are realized by expanding f in terms of the

basis
f= Zc,ygoﬁ, (1.2)

yel’

and retaining n terms from this expansion which correspond to the largest (in abso-
lute value) expansion coefficients. The typcial greedy algorithm will construct the same
approximations. The situation is much less clear when dealing with more general dictio-
naries.

In the case of general dictionaries, algorithms for generating n-term approximations
are typically built on some form of greedy selection

Ok =Py, K=1,2,..., (1.3)
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of elements from D and then using a linear combination of ¢i,..., ¢, as the n-term
approximation. The standard greedy algorithm (called the Pure Greedy Algorithm) makes
the initial selection ¢, as any element such that

p1 1= Argmax [(f, o)]. (14)
peD

This gives the approximation f; = (f,¢1)¢1 to f and the residual r = f — fi.
Given that ¢q,...,pr_1 have been selected, and an approximation f,_; from Fj_; :=
span{p1, ..., r_1} has been constructed, the next dictionary element ¢y, is chosen as the

best match of the residual
ri-1 = f = fi-1, (1.5)

in the sense that
or = Argmax [(rp_1, ¢5)|. (1.6)
yel

There exist different ways of forming the next approximation f; resulting in different
greedy algorithms. We focus our attention on Orthogonal Matching Pursuit (OMP), which
forms the new approximation as

fe == Pif, (1.7)

where Py is the orthogonal projector onto Fj. OMP is also called the Orthogonal Greedy
Algorithm. More generally, we analyze the Weak Orthogonal Matching Pursuit (WOMP)
where the choice of ¢y, is only required to satisfy

(k-1 r)| > wmax (1, ¢4)], (1.8)
el

where k €]0, 1] is a fixed parameter, which is a more easily implemented selection rule in
practical applications. Once this choice of ¢y, ..., ¢, is made, then f; is again defined as
the orthogonal projection onto Fj.

The main interest of the present paper is to understand what properties of a dictionary
D guarantee that the approximation rate of WOMP after O(n) steps is comparable to the
the best n-term approximation error o, (f), at least for a certain range n < N. A related
question, but less demanding, is to understand when WOMP is guaranteed to exactly
recover f whenever f € X, in O(n) steps for a suitable range of n. This is sometimes
refered to as sparse recovery. Of course, as already mentioned, we know that both of these
questions have a positive answer for the entire range of n whenever D is a Riesz basis for
H.

To give a precise formulation of the type of performance we seek, we define the concept
of instance optimality.

Instance Optimality: We say that the WOMP algorithm satisfies instance optimality
for n < N, if there are constants A,C > 0, with A an integer, such that the outputs f,
of WOMP satisfy

1f = fanll < Con(f)n, (1.9)
forn < N.



Notice that if (I.9) is satisfied then it implies a positive solution to the sparse recovery
problem for the same range of n since o,,(f) = 0 when f is in X,. To obtain results on
sparse recovery or instance optimality requires structure on the dictionary D. The first

results of this type were obtained under assumptions on the coherence of a dictionary
D C H defined by

i = p(D) :=sup{[{p,¥)| : v, ¥ €D, p# Y}

The first results on this general circle of problems centered on sparse recovery. Tropp
[7] proved that whenever the dictionary has coherence pu < ﬁ, then n steps of OMP
recover any f € X, exactly.

Concerning instance optimality, we mention that Livschitz [5] proved that whenever
1 < =L then after 2n steps, the OMP algorithm returns fs, € X9, such that

20m.?
1f = fanll < 30n(f)n- (1.10)

A weaker assumption on a dictionary, known as the Restricted Isometry Property
(RIP), was introduced in the context of compressed sensing [I]. To formulate this property,
we introduce the notation

Dc =Y ¢, (1.11)

vyel

whenever ¢ = (¢,),er is a finitely supported sequence. The dictionary D is said to satisfy
the RIP of order n € N with constant 0 < § < 1 provided

(L= 0)lellz> < l|@el* < (1 +0)llelliz,  lle]lw = #(suppe) < n. (1.12)

Hence this property quantifies the deviation of any subset of cardinality at most n from
an orthonormal set. We denote by d,, the minimal value of ¢ for which this property holds
and remark that trivially 6, < d,.41.

It is well-known that a coherence bound

w(D) < (n—1)"" (1.13)

implies the validity of RIP(n) for d,, < (n — 1)u, but not vice versa [7].

In [§], Tong Zhang proved that OMP exactly recovers finite dimensional n-sparse
signals, whenever the dictionary D satisfies a Restricted Isometry Property (RIP) of order
An for some constant A, and that the procedure is also stable in ¢? under measurement

noise. The main result of the present paper is the following related theorem on instance
optimality for WOMP.

Theorem 1.1 Given the weakness parameter k < 1, there exist fized constants A, C, 6",
such that the following holds for all n > 0: if D is a dictionary in a Hilbert space H for
which RIP((A + 1)n) holds with d(at1y, < 0%, then, for any target function f € H, the
WOMP algorithm returns after An steps an approximation fa, to f that satisfies

If = fanll < Con(f)n (1.14)



The values of A, C, k, and ¢* for which the above result holds are coupled. For
example, it is possible to have a smaller value of A at the price of a larger value of C' or
of a smaller value of 0*. Similarly, a smaller weakness parameter x can be compensated
by increasing A.

While the theorem of [§] is not stated in the above form, it can be used to derive
Theorem [Tl by interpreting the error of best n-term approximation as a measurement
noise. In this way, one version of the above result can be derived from [§] for OMP (x = 1)
with 6* = § and A = 30. Let us mention that Zhang’s theorem is also established in [4],
with the same proof, but with different constants 0* = é and A = 12.

In what follows, we do not focus on improving the constants, but rather our interest
is to provide a conceptually more elementary proof for Theorem [[LT. Namely the proof
for [§] and [4] is based on an induction argument which involves an auxiliary greedy
algorithm (initialized from a non trivial sparse approximation) in an inner loop. Our
proof avoids using this auxiliary step. It is also presented in the framework of a possibly
infinite dimensional Hilbert space H. We give the new proof in the following section. We
then give some observations that can be derived from Theorem [L.1l

In this paper, we shall sometimes use the notation ®*v = ((v, ¢,)) er for any v € H,
and cr to denote, for any ¢ = (¢,),er and 7' C T', the sequence whose entries coincides
with those of ¢ on T" and are 0 otherwise.

2 Proof of Theorem [1.1]

In this section, we give a proof of Theorem [[.LT. We begin with the following elemen-
tary lemma which guarantees the existence of near best n term approximations from a
dictionary.

Lemma 2.1 Let D be a dictionary in a Hilbert space H that satisfies RIP(2n). Then,
(i) the set ¥, of all n-term linear combinations from D is closed in H.
(ii) For each f € H, e >0, and n > 1, there exists a g € ¥, such that

If =gl < (T +&)on(f)an (2.1)

Proof: To prove (i), we let (¢*)i>0 be a sequence of elements from Y, that converges in
‘H towards some g € H. We may write

g" = ock = Z Lo, (2.2)

yel’
with ||c*|| < n. For any € > 0, there exists K such that
lg" = g'll <e, k1> K. (2.3)

From RIP(2n), it follows that
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which shows that the sequence (c¥),>¢ converges in £ to some c¢ € 2. In particular, we

find that

lim cij =cy eI (2.5)

k——~4o00

If ¢, # 0 for more than n values of v, we find that ||c*|[, > n for k sufficiently large which
is a contradiction. It follows that g =3 ¢, € 5,.

To prove (ii), let g* € 33, be such that ||gr. — f|| = on(f)n. If 0,(f) > 0, then g = gy,
will satisfy (ii) if & is sufficiently large. On the other hand, if o, (f) = 0, then g — f,
k — oco. By (i) f € ¥,, and so we can take g = f. O

2.1 Reduction of the residual

Our starting point in proving Theorem [[T]is the following lemma from [8] which quantifies
the reduction of the residuals generated by the WOMP algorithm under the RIP condition.
In what follows, we denote by

Sk =AW} (2.6)

the set of indices selected after k steps of WOMP applied to the given target element
f € H, and denote as before the residual by rp = f — fi.

Lemma 2.2 Let (fx)r>0 be the sequence of approzimations generated by the WOMP al-
gorithm applied to f, and let g = ®z with z supported on a finite set T'. Then, if T' is not
contained in Sy, one has

Il < el = = o, = 11 — g} 27)
o= #(T'\ Sk) ’ ’
where § = Ou(rus,) s the corresponding RIP-constant and x €|0,1] is the weakness

parameter in the WOMP algorithm.

For completeness, we recall the proof at the end of this section. It is at this point, we
depart from the arguments in [§] with the goal of providing a simpler more transparent
argument. An immediate consequence of Lemma is the following.

Proposition 2.3 Assume that for a given A > 0 and §* < 1, RIP((A + 1)n) holds with
Satiyn < 6%, If g = @z, where z is supported on a set T' such that #(T') < n, then for
any non-negative integers (j,m, L) such that #(T \ S;) < m and j +mL < An, one has

L 2(1 8%
Irjsmel? < €U0 g2 4 L f — g,

—~

2.8)

Proof: By Lemma 2.2 if ¢ = ®z where z is supported on a set T" such that #(7T) < n,
then for any non-negative integers (j,m, L) such that #(7°\ S;) < m and j +mL < An,
one has

mL
max{0, ||[rjsme|* = || f — gl*} 1— w1~ 5*)/m> max{0, [[7;]1* = [If — g/}

<
—HQ _ g%
< e U max{0, [|r 12 = || f — 9117},

where we have used the fact that #(7°\ S;) < m for all [ > j, This gives (2.8) and
completes the proof of Proposition 23l O



Proof of Theorem [I.1: We fix f and use the abbreviated notation
on i =0n(f)u, n>0. (2.9)

We first observe that the assertion of the theorem follows from the following.

Claim: If 0 < k < n satisfies
[ all < 20%, (2.10)

and is such that o, < %, then there exists k < k' < n such that
74w || < 20%. (2.11)

Indeed, assuming that this claim holds, we complete the proof of the Theorem as
follows. We let k be the largest integer in {0,...,n} for which ||rag|| < 20%. Since
|70l] = o0 = || f]|, such a k exists. If & < n, then we must have o, < 40,, and therefore

[Tanll < llrarll < 205 < 80y, (2.12)

so that (LI4) holds with C' = 8.
We are therefore left with proving the claim. For this, we fix

1
0 == 2.13
6 ? ( )
and 0 < k < n such that (ZI0) holds and such that o, < %*. Let &k < K < n be the first
integer such that ox < 2. By (ii) of Lemma 2.1l we know that for any B > 1 there is a

g € Xk with || f — g|| < Bok(f). Therefore, g has the form
g=0z2=> zp, #(T)=K. (2.14)
yeT

The significance of K is that on the one hand
B
If =gl < Box < Zou, (2.15)

while on the other hand
o < 4ok 1. (2.16)

To eventually apply Proposition for the above g and j = Ak, we need to bound
#(T \ Sar) with A yet to be specified. To this end, we write K = k + M, with M > 0,
and observe that if S C T is any set with #(S) = M and gg := Zyes 2+, then

losll > 17 — (9= 9)| = lIf — gl > o~ Box > (1= D)on,  (217)

where we have used the fact that g — gg € Y. Using RIP, we obtain the following lower
bound for the coefficients of g: for any set S C T of cardinality M

B\? i} 7
(1=7) ot < lgsl® < (1489 D 122 = 2 |12 (2.18)

yeS yesS



Taking for S the set S, of the M smallest coefficients of g and noting that then for any
more general S C T with #(S) > M, one has <ZVES |Zv|2>/<zyesg |Zv|2> > #(S)/M,

and hence 6 B2 4(5)
I T Wi . T 2
7(1 4) ot < ;\zﬁ,\ . (2.19)

For the particular set S := T\ Say, if #(S) > M, the above bound combined with the
RIP implies

2
* S
(168 (1-2) 2202 <llgsl> < g — fanlP < (g = FIl + lracl)

2
< (Box +20,)* < (2 +2) ot

Since 6* = 1/6 this gives the bound

2
542
H(T \ Sa) < ZLLM < 13M, (2.20)

HED

where the second inequality is obtained by taking B sufficiently close to 1.

We proceed now verifying the claim with # = K — 1 when K — 1 > k and with
k' = k + 1 otherwise. In the first case we can use the reduction estimate provided by
Proposition 23 with j = Ak in combination with (ZI6) to deal with the term ||rax|| in
238). When K = k + 1, however, we cannot bound ||r4x|| directly in terms of a o; for
some [ > k. Accordingly, we use Proposition in different ways for the two cases.

In the case where M > 2, ie., K —1 > k, we apply (2.8) with j = Ak, m = 13M
and L = [4x7%]. Indeed Ak + Lm = Ak + 52M < An holds for k + M < n whenever
A > 52k72. Moreover, notice that for such an A

1 A
A(K—1):Ak+A(M—1)zAk+§AM:Ak+2—?:Ak+Lm, (2.21)
whenever
A > 26[4k77]. (2.22)
This gives

lra-—nll* < lIrarszml?
< e B rarl? + 11F = gll?
< 6_10/340,3 + B?*0%
< 6_10/3640’%_1 + Bzaf(_l
S 40’%(—17

where we have used (ZI0]) in the fourth inequality, and the last inequality follows by
taking B sufficiently close to 1. We thus obtain (Z.I1]) for the value &' = K — 1 > k.
In the case M =1, ie., K =k + 1, we apply (2.8) with j = Ak, m = 13 and

L =[6x7].
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In fact, from (220) we know that #(7"\ Sax) < 13 and An > A(k+1) > Ak +mL for A
satisfying (2.22]). This yields
Irages 1P < 1rakeme|?
<efranll®+11f = gl?
< 4e 0} 4+ B0},
_ 2
< (46 > 4 %)U%-

This implies that S441) contains T'. Indeed, if it missed one of the indices v € T', then
we infer from the RIP,

(L =09 <llg— fawsnl?
< (If =gl + lIrag+n11)?

2
< <B(7K +4/4e 5 + ?—gak>
2
< (% +4/4e7% + ?—S) o
On the other hand, we know from (2Z.I9) that

6 B\?2
S(1-3) R <l (2.23)

2 2
which for B sufficiently close to 1 is a contradiction since g <1—§) > g (§+\ [4e=5 + ?—2) )

This implies that ||rag11)|| < ok41, and therefore (ZII) holds for the value &' = k + 1.
This verifies the claim and hence completes the proof of Theorem L1l O

Let us observe that Theorem [L.T] does not give that f, is a near-best n-term approxi-
mation in the form

1f = fall < Coonl(f)n- (2.24)
However a simple postprocessing of f4, by retaining its n largest components does satisfy

2.24).

Corollary 2.4 Under the assumptions of Theorem [T, let fa, = ®cA™ be the output of
WOMP after An steps. Let T C T, #(T) = n, be a set of indices corresponding to n
largest entries of ¢\, Define fi € ¥, to be the element obtained by retaining from fay,
only the n terms corresponding to the indices in T'. Then,

If = fall < Con(fn, (2.25)

where the constant C* depends on the constant C' in Theorem[L 1 and on the RIP-constant
d(At1)n-

Proof: By Lemma 2] there exists a ¢ with ||c|[, < n, such that
If — @c| < 20, (f)n (2.26)
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It follows that

1 C+2
e — ¢l < |Be — B |p < ——2 5 (. (2.27)
1- 5(A+1)n 1- 5(A+1)n
If S = supp(c), we obtain
le =ct"lle < ller = c7lle + llere — c7tlle + [ler? e
< 2c—c"le + sl e
< 3llc = |, (2.28)

which, by (227, provides

3(C +2)

le = c™lle < 3llc — e <
I —dat1)n

on(f)n. (2.29)

The approximation ®c#" is in ¥, and satisfies

3y/1+0 n(C+2
I = @ < 20u(Fu+ (et — o)l < (2+ ;%+ Nowrr. (230

which proves (2.25). O

Proof of Lemma 2.2} We may assume that ||| > || f — g|| otherwise there is nothing
to prove. First observe now that

Iriall® = 11f = Pt fII*
= |If = Puf I = (Px = Piyr) f117
< el = [k, @)1

Therefore, it suffices to prove that ||rg|* — [(rk, ¢4, ,)|? is bounded by the right hand side
of (2.7) which amounts to showing that

(L =) llrall* = 1f = glI*) < &7 (T \ Se) [, @) (2.31)

To prove this, we first note that

2lg — ful VIIrel2 =1 = gl> < llg = full®> + Irel> = [1f = gl
= g — fill> + lIrell? = lg = fu — 72l
<2[(g = fe.u)| = 2[{g, )|

This is the same as

lrell* =11 = gl < Lo r)? (2.32)

lg = fell*
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If we write f, = ®cF, with c¢* supported on S;, then the numerator of the right side

satisfies
<(I)Z, Tk> |

(zsg, P1y) 2|

(g, )| =

IN

1Zsg o1 |97k e

IA

£ zsello [(re, 0y
IVF#(TN Se)llzsg e [ (s 09000
<k AT\ So)llz — el (rrs 0y

On the other hand, recalling that 6 = d4(s,ur), the denominator satisfies by the RIP,

IA

lg — fell> = |1 @(z — M) |IP > (1 = 0) ||z — "I (2.33)
Therefore we have obtained

#(T\ Se)[(re; @)
k2(1 =) ’

which is (2231). 0

Il = 1Lf = gll* <

(2.34)
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